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This article describes a general algorithm for the calibration of 3-axis electronic compass/clinometer
systems and gives an analysis of its properties. The algorithm presented is fast and accurate and
makes minimal assumptions about the calibration environment.

Introduction

Electronic 3-axis compass/clinometer systems prowds very useful for compact survey
instruments. They allow the determination of thegme orientation of the device in space relative t
gravitation and the earth magnetic field. Suchstesy works for any direction with any orientatidn o
the device. There are no levelling requirementsrancestriction on steepness.

Due to manufacturing tolerances and external inftes, such a system inevitably reveals certain
errors. Among them are:

- Offset and gain errors of the sensors.

- Sensors mounted with incorrect angles.

- Angular errors between the sensors and the Leesen.

- Influences of the battery and other metal pantthe magnetic field.

Fortunately, all these errors can be eliminateatiredly easily by a linear correction function apgl
to the sensor values before evaluation. The rersaioftthis article describes a method to calculate
the coefficients of this correction function fronset of calibration measurements.

The Calibration Function

The calculation of the calibration function unaaitly includes a lot of vector and matrix algebra. |
the following bold capital letter#\) are used for three dimensional matrices and dettdrs with an
arrow (@) for 3 dimensional (column) vectors. Appendix Atains a summary of the vector and
matrix operations used.

For the analysis of the problem, it is convenienivork in the local
coordinate system of the device instead of a fieedth-referenced
system. We generally use a coordinate system héhxtaxis in forward

(Laser beam) direction, y to the right, and z ddfig. 1). — X
If the gravity and magnetic field sensors are medraiong these axes, the B

values read from them naturally form two vectorsum coordinate y
system: The gravity vectays and the magnetic field vectans , wherei /

runs over all measurements used for the calibration / lZ

To apply calibration corrections we introduce tbsult vectorsjr, and
mr, connected to the sensor values by a linear fumctio
gr =Gegs +gd

. L 1)
mr, =M oms + md



For the final direction measurements, the resudtors are used to compute the azimuth and
inclination angles.

During calibration, the goal is to find values tbe two matrice&s andM and the two offset vectors
gd andmd such that the errors are minimized. To get a nredsu the quality of a calibration we
introduce the ‘true’ vectorgt, and nt, . These are the theoretical exact gravity and ntagheld
vectors for a given orientation of the device. Tiagnitude of the two vectors has no influence en th
calibration and the final direction calculationsisltherefore arbitrarily set to one.

To characterize the orientation of the device iacgpwe use the yaw, pitch, and roll angles (also
known as Tait-Bryan rotations or z-y-x Euler anyigisen as follows:

- Start with the device in normal position, z adesvn and x axis pointing to north.

- Turn the device around the local z-axis by the gagley (= azimuth).

- Turn the device around the local y-axis by thetpangled (= inclination).

- Turn the device around the local x-axis by tHeanglee.

In normal position the gravity vector points dowargy the z-axis:

gtnormal = z = [O O 1]

The magnetic field is slightly more complicated.tA¢ equator it points in the direction of the xsax
At all other places it includes a vertical partgieneral it can be written as:

I’ﬁtnormal = Ry(a) °© 2

Wherea is the angle between the magnetic field vectortaedyravity vector. It is connected to the
dip angle, the (negated) inclination of the magngéld lines as follows:

a=90°—dip

At the equator dip is 0 andis 90°. In the northern hemisphere dip arate both between 0 and 90°.
In the southern hemisphere dip is negative argdbetween 90° and 180°.

Now if we turn the device around a given axis lgheen angle both

vectors turn around the same axis but in the oppdsiection because it TX X
is the coordinate system which turns, the vectergybobally fixed (Fig.
2). If we apply all rotations as stated above wetige following general : v

1

form of the true vectors:
at, = Rx(_¢i)°Ry(_9i)°2
mt, =R, (=¢) R, (=) R, (=¢;) o Ry(a)~Z

2)

Solving these equations f@rand ¥ gives the well known equations needed to getitied &zimuth
and inclination angles from the measured vectors:

6 = —arctan(y,, /dr,” +dr,”)
y =arctan(fr, [, — gr, [, ) 0igr|, v, (6r|* - gr, [ar » mr))

Arctan is used here in the sense of the computetifun arctan2(y, x) = argument of the vector [x, y
in the range #. For an alternate derivation see [1].

3)

For the calibration the true vectors can be useatbfime the error of a set of calibration measurase
as the RMS average of the distances between tbela@d and the true vectors:

E? :%Dzmri gt | +|mr, - i, |° 4)



Now suppose for the moment we have a calibratismr@mment which allows us to measure the
device orientation angles exactly for each of ab§etlibration measurements. This allows us to
calculate the true vectors for each measuremengj @gjuations 2). To get an optimal calibration we
simply search fo65, M, gd, andmd such that the squared error gets minimal.

The minimum can be found algebraically by settithghee partial derivatives to zero:
OcE*=20D (Gogs +gd-gt) 0 gs =0

DMEZZ%@(M‘”TS +md —mt;) O ms =0

i B 5)
OuE?=20).Gogs +dd-gt, =0
OpgE* =20 M oms +md —imt, =0

The Nabla or Del operatad means a vector or matrix consisting of the derrestto the elements of
the given vector or matrix. There is no magic bdhhis operator; it is just a compact representatio
of the large number of derivatives.

The equation system can be solved algebraicallytieg in:
Gs=gs 0gs —gs 0ds

Ms=ms O s —ms O ms

G =(gt Dds -at 0gs)-Gs™

M = (mt, O ms —mt, 0 ms)oMs™

gd =gt -Gogs

id = t, - M o g

6)

Averages K) overi are used here instead of sums to avoid the numdrhoterms.

We get a result only if th&s andM s matrices are invertible. This can easily be guechif we have
a large number of measurements and the corresgpgdirand ms vectors are evenly spread over all

possible directions. In this case the averggeand ms vectors as well as the non-diagonal elements

of the gs U gs and ms U ms matrices cancel out statistically. The sum ofdlagonal elements of

either of these matrices is equal to the squatkeofength of the corresponding sensor vector. The
average matrices can therefore be approximated as:

GsUilgs| 0 MsOilms| O
with the identity matrix.

If the spreading is not perfect, the matrices aréonger diagonal but the diagonal elements alle sti
dominant and the matrices are still invertible.

In reality not all of the orientation angles of ttaibration measurements are known. In this case w
simply treat all not a priori known angles as add@l unknown of the optimization problem. This
results in a much larger but still manageable egnaystem.

Three types of measurements are common in practice:



1) Known Direction

The traditional approach to calibration is to measugiven course of precisely known survey
stations. A calibration procedure for such a setupr instance described in [1].

For given survey stations, we know the directiod eerefore they andd angles but not the roll
anglep. This gives us a new unknowf and a new equation for each measurement:

2

Oi: oE
09,

To get a replacement for the no longer known teetars we define the partially turned vectors:
dp, =gt (¢, =0) = Ry(_gi)o z
mp, =mt; (¢, =0) = Ry(_ei)o R,(=¢)° Ry(a’)o z

:%[ﬂgtilgrilx]+%mﬁ]ti'mri’)?]zo 7)

The true vectorgit, and mt; can now be approximated using an estimated
gt = R;(=¢,) - dp,
mti = Ri(_¢i)° mpi
Substitution in 7) gives
[Ry(=¢,) o dp;, 0, X] +[Ry(=¢;) o Mp;, M, X] =0 8)
This can be solved as
anig) = (0900 X]_+ (7o, . 7).
[Op, X, gr;, X] +[mp, x X, i, X]
_ 9r, top, — gr, tgp, + mr, tinp, — v, [inp,
ar, [8p, +gr, [gp, +mr, [np, +mr, [ip,
We assume here that, and nr; are given vectors. However, their values depenthertalibration

coefficients which in turn depend on true vectard thus on thep, . So we have to solve the system

consisting of equations 5) and 8) simultaneoushys Tan no longer be done algebraically but it can
easily be done iteratively by applying 6) andrdjurn until the result stabilizes.

9)

2) Free M easur ements

The method mentioned above is only useful if weehaacess to a set of precisely known survey
stations. In practice it would be very desirabléave a way to do a calibration any time at angeala
To approach this goal we examine the case of af$ete measurements without any known direction
angles. This means all anglesd, andg need to be treated as unknown. In contrast toteoua)

where we search the optimal turn angle around #wass we now search for an optimal rotation
around any axis. Equation 7) is still valid butiidition we can substituté by any other vector, in
particular byy and zZ:

[gt;, gr,, X] +[mt;, mr,, X] =0
[gt, gr,, Y] +[mt;, i, ] =0
[gt;, gr, Z]+[mt;, mr,, Z] =0
The three equations above can be combined to:

—

gt, x gr, +mt, xmr, =0 10)



In addition we have the general properties:
gt,|=|mt|=1 DOgt,nt, =a 11)
Together equations 10) and 11) uniquely definevdaors gt, and mt, (except for a mirrored

solution gt = —gt, and mt; = —mt,). To satisfy equation 10) they have to residéngrgame plane as
dr, and n, . Inside this plane they must be rotated such that:

|Gt, x gr,| =|dr| Bin@gt,, gr,) = |, x ;| = || Bin@n,, ;)

They can be constructed geometrically (Fig. 3)alcuated
algebraically using the plane normal vecipr

i, =(gr, <, mr,
mr, = mr, [Eos@) + (M, x ;) [$in(@) 12)
gt, =(gr, +mr/)

mt, = G, [Bos@) + (i, X gt,) $in(@)

Calibration using free measurements has one megovldhck: since
the Laser direction is not used at all, it canr®tbed to calibrate
the angular error between the sensors and the .\A&etherefore
have to do at least part of the measurements ivea glirection.
However, as we will see in the next section, there need to
know this direction in advance.

3) Unidirectional Groups

An alternative to free measurements and measursmékhown directions is to measure a fixed but
not a priori known direction several times withieais roll angles. Such a set of measurements with
commony andéd but varyingy is called a unidirectional group. Similar to trese of known

directions we have an unknowrfor each measurement and equations 7) and 9agpll. In

addition we have two unknown anglesandé for each group to fix its direction. This givestu®
additional equations to get the optimal rotatiothaf common part of the true vectors. The equations
are similar to the case of free measurements exiceptare summed up over all measurements of the
group and the individual turn must be removed first:

2R (@) Gt Ry(4) o dr, VI +[R, () o Mt R, (4,) o i, ¥1 =0
0k ~ 13)
D IR:(#) Gt Re(8) o Gr, 21 +[R(4) o 1, Ry (4,) o 11w, 2] = 0

i0sk

Here k runs over all groups a8k means the set of measurements belonging to deoup
As in the case of known directions, we define pdltiturned vectors for each group:
ap =Ry(=6)°Z

mp, =Ry (=6)° R, (-, )°Ry(a)-Z

and write the true vectors as:

Oi OSk: gt =R, (~4,) > Gp

. R ~ 14)
Oi0Sk:mt =Ry (=¢;) > Mp,



The gp, and mp, can be seen as adapted versions ofgth@nd mt; turned to a common roll angle.
To be able to find the unknown direction, we introd similarly adapted versions of tige and n,
vectors:

Qa, = Ry(¢i) © gri

ma, = R, (¢,) o N,

The choice of the common roll angle is arbitrarg &as no influence on the result. Instead of uging
= 0, we can as well conform to the roll angle & finst measurement in each group by replacing the
@. in 14) and 15) with:

0, =0, — ¢y

whereik is the firsti 0 .

This makes the algorithm independent of the globf@rence system and avoids special handling of
the roll angle ambiguities & = + 90° (gimbal lock).

15)

Substitution of the partially turned and the addptectors into equations 7) and 13) and combination
of the three equations gives:

dp, x dc, + mp, xmc, =0

gc, = z g8,
0

me, = z may
i

This has the same form as 10) and allows us to wotlgp, and mp, from the vectorsjc, and mc,
similar to equations 12):

A, =(dc, xmc, )

g« ={dc, + e, [os@) + (Mc, xR ) 3in(@)) 16)

mp, = dp, [€os@) +(n, x gp,) [Sin(a)

Equations 16) and 9) must be solved simultanedaestause of their circular dependency. Fortunately

iteration between the two equations convergesddliiat a single iteration suffices to solve ithwit
high accuracy. In practice we do the following:

- Get an approximation of thé from the relative roll angles of the result vest@r, and . .
- Get the adapted vectors from theusing equation 15).

- Get gp, and mp, from gc, andmc, using equations 16).

- Get the finald, using equation 9).

- Get gt, and mt, using equation 14).

The Influence of the Magnetic Field

The shape of the magnetic field, in particulaintdination, is a critical value in our calculatmnThe
precision of the correspondimgangle has a direct influence on the accuracyefeélulting

calibration coefficients. In principle is known for any location on earth. In practiceyever,o. is

hard to figure out because it changes over timetla@e is an uncertainty because of local magnetic
anomalies. It is therefore more convenient and raoceirate to treat as an additional unknown of
the optimization process. This gives us the follgywew equation:



0E?
oa

=%[Z[rﬁri, Ri(=¢)°Ry(=6) R, (=)o y, ;] =0

This can be solved as:
Q_R@)oRy(B)oRy(#)omr)e X > (Tt x ) (Gt x ;)

tan@) = <

(X R.@)oR,(@)oR(p)emr)ez Y -gt

For free measurements whege, mt,, andmr, reside in the same plane, it can be simplified to:

D x g
tan(a) ZIZr_f“’—ogt

For unidirectional groups it can be expressed uiegadapted vectors:

Z|mck xgpk|

tan@) = s———
z mC, ¢ 9P,
k
Again, these equations circularly depend on ako#guations and their evaluation must be included
in the main iteration loop.

Note that, although the inclination of the magmetdfis a critical value during calibration, thedi
calibration function is independent of it and alwated device works equally well everywhere in the
world.

The Roll Angle Ambiguity

A set of calibration measurements consisting ofdmdirections, free measurements, and
unidirectional groups does not uniquely definertbleangles. IfG andM are part of a solution of the
equation system, so a@ andM' given by:

G'=R/(a)-G

M'=R (w)oM

for any anglen. Since we are not interested in measuring rollem@ny of these solutions is equally
well suited for our needs. However, the ambiguggtdbilizes the convergence of the main iteration.
It is therefore advantageous to define the rollemgomehow. A simple way is to enforce a y-z
symmetry in theéG matrix. This means the roll angle is defined by tmounting angles of the y and z

acceleration sensors. The symmetry can easily foeoel by a replacement of the relevant elements
of theG matrix at the end of each iteration step:

Gl =Gy =2(G,*G,)

Convergence and Termination Condition

The question arises how many iterations we hawveake in the main iteration loop until the values
converge to the desired result. In general, acngrth the Banach fixed point theorem the errorof a
approximationx, aftern iterations compared to the precise solui@an be calculated as follows:

Iy =¥ < Oy =,
1-q



The Lipschitz constarg is the improvement of the precision from steptépsFor our algorithng is
mostly independent of the exact values used andeassumed to be between 0.8 and 0.9 in practice.
If we repeat the iteration step as long as

max(G, -G,.4[.[M, -M ) >10°

we can be sure all elements of the final matricesagthin 107 of the exact values. This assures the
error introduced is negligible compared to the utacety of the measurements. The errors of the
offset vectors are ignored here because the elsméthese vectors always converge faster than
those of the matrices.

TheMain lteration
The main iteration can be summarized as follows:

1) CalculateGs andMs and their inverse and a first estimatioruof
2)SetG=M=landgd = md = 0.

3) Get thegr, and mr, vectors fromG, M, gd , md and thegs andms .
4) Get thegt, and mt, from gr,, mr, ando.

5) Get a nevs. from mr, and gt, or mc, and gp, .

6) Get newG, M, gd, andmd from the Gt, and mt, .

7) EnforceG , =G, .

8) Loop to 3) as long as the changeSiandM >107°.

Remarks:

- The matrix inversions dbés andMs need to be done only once because the two mattege=nd on
the sensor values only.

- Measurements with known direction, free measurgsje@nd unidirectional groups may be mixed
freely inside a set of calibration measurements.

- Free measurements can be handled as unidirelctjongs consisting of a single measurement.

A pseudo code version of the full algorithm is udzd in appendix B.

The Calibration Procedure

As stated earlier, the set of measurements usealdalate a calibration should be taken such tit t
device orientations are evenly spread over thdiootgroup. Just using randomly selected
orientations is not a good idea because it turhsooie badly spread in practise. A good choiceafor
well spread set is for instance the rotational sytmyngroup of a cube. A cube can be placed with any
of the 6 faces up and in each case any of theedfaaks may be in front, giving a total of 24
orientations. Unfortunately it turns out that 24as@rements are not enough for a good calibration. A
perfect set of 60 orientations is contained indyx@metry group of the
dodecahedron or icosahedron. However, this seti@t@ations is not
useful in practice because it is too complex todpeoduced in the field.

A proven and easy to use set of measurements feltbeing:

Use the 14 directions given by the middle of tHfadgs and the 8 vertices
of a cube as seen from its centre. Measure eaettidin with four evenly
spread roll angles, giving a total of 56 measurdmfig. 4).




Representative numerical values:

Azimuth (y) Inclination (0) Roll Angle (¢)
Directions 1-4: 0°, 90¢°, 180°, 270° Q° 0°, 90°°1800°
Directions 5-6: 0° 90¢°, -90° 0°, 90°, 180°, 270°

Directions 7-14:  45°, 1359, 225°, 315° 35.3%,85.3  0°, 90°, 180°, 270°

How Preciseisit?

Generally, a measuring device is useless if we havédea how precise it is. It is therefore necgssa
to find a way to quantify the error of the deviceldhe influence of the calibration on it.

Assume for the moment all the sensors are perkeepet for the proposed linear errors and we are
able to execute the calibration measurements witininoducing any additional error. In this case a
calibration function exists which exactly compempsadll the errors leading to a total erffoof zero.
This is obviously the minimum we are running intbem the algorithm converges.

In practice there are additional errors, namelyloam errors (noise), nonlinearities, and sightirrgrsr
during the measurements. Since these are all emafls on the input variables of our algorithm, we
can use error propagation to analyze their infleemrt the resulting precision.

Let us first look at a single measurement ignodalipration for the moment. Equations 3) are used t
getd andy directly from the measured sensor values. If véeia® the sensor errors are random and
independent, we can use statistical error propagati

2
AQZ—Z[SQH j =[]

:Agz

Ag
o
Ay? :Z(a_‘/jmgj +Z(a—iﬂmmJ :‘mermgz_,_pﬂMmez

S|n(2m)[ﬂan(6?)mos(ﬂ)+cos@') +sin(a)? dan@)? (G2 + 1 AR
sin@)? sin(@)?

Where A8 and Ay are the errors of the resulting angldg, and Am are the absolute errors of the
individual sensors, andg and Am are the relative errors of the sensors. All ohthaust be
interpreted as standard deviations of the corredipgrvalues.

The error ofy approaches infinity whef gets near 90°. This is not a bad
behaviour of the compass; it is a property of tnéeEangles. When the JEEES SAN
angles are used to get a direction vector, theenite ofy decreases "-lr>>
whend approaches 90°, and the error of the vector resraimall for all . :
directions. It is therefore appropriate to usehitbgzontal and vertical <L/ |
components of the error of a unit direction veatstead of the errors of '\ I
the angles (Fig. 5): AN

Ah=cos@) Ay
Av=A6

The horizontal error depends slightly on the dimtbf the measurement. To get a general
characteristic value, we use the RMS average oéttur over all directions:

o g o) g

_2_i 2 —
Ah _4njjAh [tos@) MOy = A ()



Not surprisingly, the error increases with decnegasi i.e. towards the poles. Note, however, that this
is partially compensated by the fact that the maglei of the magnetic fielc]rﬂ) increases at the

same time.

The sighting error is another independent direeti@nror which adds to the sensor induced errars. |
summary we have:

Bﬁ;ln(a)z EﬁAg Am) mg*2+Ad2
AV? = AG? +Ad?

TheInfluence of the Calibration

If we add calibration, there is no relevant chattgihe measurement errors above, but we introduce
an additional error because of the limited precigibthe calibration coefficients. The errors df th
coefficients are induced by the sensor and siglarmgrs of the calibration measurements.

Again they can be calculated using statisticalrggropagation. To keep things clear, a vecdtsrs
used here as a short for all sensor values dhaltalibration measurementgs(& ms). Another

vector C represents all 24 calibration coefficients givgry M, gd , andmd :

Bhy,” = Z(S—QJZ a%° = Z{COS@) DZ( a"i Baij] x>

ot 35 2[5 R ) e

Reordering gives:

= ch, Ga& B‘E [A%°  ch, =cos@)? P P
W 0%, oX 0C, 0dC,
=Y v, Ba&@mxz CV, =99 99

N 0%, 0X 0C, dC,

ch, andcv, are universal coefficients given by equationsr) &). To remove their dependency on
the device orientation during the final measurenstuse the RMS average over all orientations:

‘=Y ch, G‘LG‘Lm ﬁ=# [[ch, ose) oy g

ikl

2 _ - _ 1
AV, —%:cvkl %%m oV, _yﬂjcvk, [G0s@) [ [dy [dg

Fortunately, most of these coefficients evaluateeim and some can be eliminated using symmetries.

The remaining derivatives @ to x are given by the calibration algorithm and dependhe

calibration procedure used, but not on the finahsaeement. They cannot be calculated algebraically
because we do not have a closed representatitve @lgorithm. They can, however, easily be
evaluated numerically for any given calibrationgedure and a givemangle. To do this, we evaluate
the full calibration algorithm several times witheoof the input values offset by a small amount at
each run.



In summary, both the measurement error and thednfle of the calibration can be written in a simple
form using 6 coefficients given for a specific badition:

Ah® = hg [AG? + hmAT? + hd [Ad?

_ 17)
AV® =vg [AG? +vmATe +vd [Ad?

The following table shows the values of these ¢oiefiits for the measurement errors and some
selected calibration procedures:

M: Error of individual measurement.

Ug4: Influence of calibration using 4 unidirectibgaoups (horizontal directions).

Ug6: Influence of calibration using 6 unidirectibgaoups (horizontal and vertical directions).
Uga: Influence of calibration using unidirectiomggbups for all directions.

Kd: Influence of calibration using known directions

Kd+: Influence of error of known directions.

a =90° a =30°
hg hm hd vg vm vd hg hm hd vg vm vd
M 033 067 100 100 000 100 233 267 100 10000 1.00
Ug4 007 0.12 0.08 0.13 005 0.08 030 0.35 0.12130.0.04 0.11
Ug6 005 009 006 011 002 006 026 031 0.09110.0.02 0.07
Uga 0.04 0.07 005 0.09 001 0.04 0.22 0.26 0.07090.0.01 0.04
Kd 0.03 006 005 0.07 001 006 018 0.22 0.09 70.00.01 0.06
Kd+ 0.04 0.06 0.06 0.06

The main usage of these numbers is to assurerntremauced by the calibration is small compared to
the error of the measurement itself. As can be,dbemnis achieved even if we use unidirectional
groups for the 4 horizontal directions only and fiee measurements otherwise (row Ug4). All
calibration coefficients are less than 20% of theesponding coefficients of the measurement errors

Since the errors are squared in the equationsawde sure the calibration adds less than 10%eto th
total error.

In the case of measurements of known directioredalitional error is introduced because the given
directions are themselves not precisely known. ddedficients belonging to these additional errors
are given in the row Kd+. It can be seen that knawections do not lead to significantly better
results compared to unidirectional groups. Evensepif the predefined directions are not very
precisely known, the additional errors easily ouglighe improvements.

Quantifying the Error

So far, we still have no absolute measure for d¢iselting error. To get a hint for the achieved
precision, we calculate the error valagiven by equation 4) during evaluation of the lwation
algorithm. To relaté& to the precision, we work out the standard demmtf a set of valued,

consisting of the components of the differenggs- gt; and mr; —mt; such that:
,_1 N S PR T I | 2
E _HDZW‘ = Gt,|” +|mr, — it | _HDZd‘
The standard deviation of this set can be compsiidstically:
1 2 2 1 2 1
S(d )2 =— d°-d =— d’ ==[E?
() 6N q,“ bt oen DZ‘ 6

Or analytically using error propagation:



S(@) =y adt =2 i,- (%j | _—[Z( J %2

Comparison of the two representations gives:

2
E) >
E2=Y| & | mx,
Zj:(axj J

As above, the derivatives Bfcan be evaluated numerically for any given catibreprocedure,
resulting in an equation for the error functiéisimilar to equations 17):

=eg[AG? + emAM* + ed [Ad?
This equation does not suffice to calculate thersrexactly but it gives us some constraints and in
particular it can be used to a get an upper botiticearelevant errors:

g hm hd
"ed

AR? < E2 [Inax vm vd
eg’

em’ed

For hg, hm, hd, vg, vm, andvd we have to use the sum of the measurement armtatadn errors.

AV? < E? Dmax&

For the standard procedure with 4 unidirectionaligs we get the following numbers:

a =90° a =30°

eg em ed eg em ed

Ug4 146 154 045 1.50 150 0.37

hg/eg hm/em hd/ed wvg/eg vm/em vd/ed | hg/eg hm/em hdled wvgleg vm/em vd/ed

Ug4 027 051 238 0.77 003 238 1.7/6 201 3.01760.0.03 2.99

The table shows a maximal quotient of 3 and theeefice have a maximal error QB[E . For a
calibration error E = 1% this means a measurenreoit ef 1.7% or about 1°.

Be aware that this relation must be used with darg.not a strict limit for the error of each imaiual
measurement. Instead it is a statistical measurhéoaverage error over many measurements. In
addition we postulated independent random errorshwib not necessarily the case, especially for
nonlinearities and systematic errors during catibra

Conclusions

It can be shown that 3-axis compass/clinometercgswtan be calibrated without relying on a given
calibration course. This allows recalibration of tevice at any time in the field.

The precision degradation introduced by impropébiation measurements can be analyzed
mathematically. For the presented standard caidrgirocedure, the additional errors are negligible
compared to the error of the measurement itself.

The algorithm presented is used in the “paperlasmg” system [2] to calibrate the DistoX, an ai-i
one electronic cave surveying device [3].

Experience shows that calibration must be repdabead time to time to avoid performance
degradation due to component drift and aging. inads using primary batteries, a calibration is
needed after each battery change because theyhattaravoidably the main source of magnetic
disturbance and new batteries never have exa&lgame behaviour as the old ones.
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Appendix A: Vector and Matrix Operations Used

Operators:

[:StandardProductof scalamumbers

o Matrix Product((M o N), => M [N, (M &), => M, [&,)
« : Dot or ScalarProduct(@+ b =a"cb =Y & Elﬁ,

x : Crossor Vector Product(a xb = [a -&,b, &b -4ab &b, -& b/

[ : Outeror KroneckerProduct(a 0 b = aoﬁT, (@0b), =4 ;)

[,,]: ScalarTriple Product([, b, €] = (axb)* ¢ = (b x¢)* a=(Ex&)* b)

||: Normor Lengthof Vector(a = NETED)

(): Normalize&/ector ((&) = ¥, [&)

00 Angle betweertwo vectors(()d, b = arccos(a) « <5>)

|| : Max Normof Matrix (M| = mijax(M i)

Rotation matrices:
1 0 0 cosw 0 sinw cosw -—sinw 0

R;(w)=|0 cosw -sinw| Ry (w)=| O 1 O R,(w)=|sinw cosw O
0 sinw cosw -sinw 0 cosw 0 0 1

Useful Identities:

ax(bxc)=b{asc)-casb)

(axb)xc=b{asc)-albec)

(axb)e (6xd)=[axb,c d]=[a,b,cxd] =((@xb)xc)sd =(a+c){bed)—(aed){bec)
(Ry(w)<d)* (R, (w)ob)=ab

(R, ()< 8)x(R,(w)ob) =R, (w)° (axb)

[R,(w)°& R, (w)ob, R, (w)-¢]=[4,b,c]

Derivatives:

O,JA eV =2[AT 0 AoV
0, (@ oM ob)=adob" =a0b
0

2 R (@-a=(0)x R, (@3



Appendix B: The Calibration Algorithm

/I Get calibration coefficients froma set of sensor values
Calibrate@js ,ms - G,M,gd,md) {
avgs=avms=0;avG =avM =0;sa=ca=0;
for (alli) {
sa=sa+|gs xms|; // sumup sineof angle
ca=ca+gs*ms; //sumupcosineof angle
avgs=avgs+ds; //sumup g values
avms=avms+ms; // sumup mvalues
avG=avG+(gs Ugs; //sumupouter product of g
avM =avM +ms U ms; // sumup outer product of m
}
avgs= ¥, [avgs, avms= ¥, [avims; // build average
avG =¥ [avG; avM = ¥ [&avM;
a =arctanga,ca); /I first estimateof a
Gi =inverse@vG —avgs[ avgs); //inverted matrices
Mi =inverse@vM —avims[] avims);
G=M=21gd=md=0; // firstestimateof coefficients
do{
for (alli) { // get result vectorsusing current coefficients
dr =Gogs +dd;
mr, =M oms, +md;
}
sa=ca=0;
for (all unidirectonalgroupsk) {

—

gc=mc=0;

for (alli in groupk) { // adapt vectorsto first vector
AdaptPhi@r, ,mr,, gr, ,mMr, — ga,ma);
gc=gc+ga; // sumup vectors
mc =mc + ma;

}

GetTrueVetors(gc,mc,a — gp,mp); // get true vector

sa=sa+|mcxgp; // sumup for a calculation

ca=ca+mce gp;

for (alli in groupk) { // getindividual roll angles
AdaptPhi@p, mp, dr,,mr, — gt ,mt,);



for (all free measuremetsi) {
GetTrueVetors(gr,,nr,,a — Gt,,mt;); // get true vector
sa=sa+|mr xgt|; // sumup for a calculation
ca=ca+mr * gt;;
}
a =arctanga,ca); // get newa
avG =avM =0; avit = avit = 0;
for (alli) {
avgt=avgt + gt;; // sumup true vectors
avmt = avmt + Mt ;
avG=avG +qt, U gs; // sumupouter products
avM =avM +mt, U ms;;
}
avgt = ¥, [avgt; avimt = ¥, Gavmt;  // build average
avG = ¥ [AvG; avM = ¥, [avM;
oldG =G; G =(avG —avgt O avgs) - Gi; // get new matrices
oldM =M; M =(avM —avmt [J avms) o Mi;
G,=G,=xUG,+G,); [l enforcesymmetry
gd =(avgt —Goavgs); // get newvectors
md = (avit — M o avims);
} while (max({|G -oldG|,|[M -oldM|) >10) // termination condition
}

Il Get estimated true vectors for given result vectors
GetTrueVetors(@r,mr,a — gt,mt) {
n =normalizedgr xmr); // plane normal
gt = normalizedgdr + mr [¢os@) + (Mr x i) [$in(@));
mt = gt [¢os@) + (i x gt) [$in(a);

/[ Turn ga/matotheroll angleof gb/mb
AdaptPhi@a, ma, gb,mb — gx,mxY {
s=gda, [gb, — ga, [gb, +ma, [fnb, —ma, (b, ;
c=gda, [gb, + ga, [gb, + Mma, [fnb, +mMa, [inb,;
o =arctang,c); // roll angledifference
ax =T, (J) - ga
Mx =T, (3) o Ma;



Appendix C: Inclusion of Non-Linearity Coefficients

To correct a potential non-linearity of the grawsctors, we use a simple second order correction
function on each sensor axis:

Gl = ds, + ¢, s, —3 (&,

gl =gs, +c, [0s,” ~1[e,

dl, =Gs, +c, [0S, -3,

where thegl; are the linearized gravity values agadare the non-linearity correction coefficients.
There is no need for a general second order fumctioche form:

gl =gs+alfs® +blgs+c

because linear and constant errors are correcteusgrby the standard calibration. The [¢term is
added to keep the influence of the correction fioncbn the rest of the calibration minimal.

The three equations can be written in vector form:
g, =95 +G2,0¢

using the diagonal matri§62, :

gs, —3 0 0
G2 =diag(gs)*-10= 0 gs,°-% 0O
0 0 gs,-%

The optimal non-linearity correction coefficienfs are selected such that the error functighgets
minimal. E is defined as before except that thedized vectorgl, are used instead of the original
sensor valuegs .

O:E*=20> (G>G2)" =(gr —dt) =0
g =Godl +gd

Solving for € results in
-1
6=(2(Goezifoeoezij 03 (G2G2)" (gt ~Go gs —§d)

If necessary, a similar approach can be used tecdahe second order non-linearity errors of the
magnetic field sensors and the third order errbtsoth kind of sensors. However, the quality of the
calibration decreases significantly if too much #ioearity coefficients are used (see below).

The calculation of the coefficients must be incldide the main iteration loop. In addition, the
linearized sensor values and the values dependinigracluding theGs matrix and its inverse must
be recalculated with the new coefficients:

1) CalculateGs andM s and their inverse and a first estimatioruof

2) Calculate the52, matrices from thegjs vectors.
3)SetG=M=landgd =md =¢ = 0.

4) Get thegdr, and nmr, vectors fromG, M, gd, md and thegs and ms .



5) Get thegt, and mt; from gr,, mMr, ando.

6) Get a neve. from mr, and gt; or mc, and gp, .

7) Get newG, M, gd, andmd from the gt, and mt; .

8) EnforceG , =G, .

9) Getanewc fromG, gd, G2, gt,, andgs .

10) Recalculate th@l, vectors Gs, and Gs™ using¢.
11) Loop to 4) as long as the change&iandM >107°.

The non-linearity correction coefficients are amotiource of calibration related error. However the
additional error is neglectible compared to theso#rrors. Non-linearity correction is therefore
advantegous even for small non-linearities.

a =90° a =30°
hg hm hd Vg vm vd hg hm hd vg vm vd
M 0.33 0.67 100 100 0.00 100 233 267 1.00 1.00 0.0000 1
Ug4 0.07v 0.12 0.08 0.13 0.05 008 030 0.35 0.12 0.13 0.04110
Ug4NL 0.08 0.13 0.08 0.15 0.07 0.08| 0.33 0.38 0.12 0.15 0.06 0.11
Ug4NL2 | 0.08 0.15 0.08 0.15 0.07 0.08 036 045 0.12 0.17 0.07110
Ug4NL3 | 0.09 0.14 0.08 0.20 0.15 0.08 047 041 0.12 0.21 0.1210
Ug4NLm3| 0.22 0.15 0.08 0.73 0.07 0.08/ 0.52 050 0.12 0.23 0.14 0.1
Ug4NLa | 0.23 0.16 0.08 0.74 0.07 0.08/ 0.55 058 0.12 0.24 0.15 0.[11
a =90° a =30°
eg em ed eg em ed
Ug4 146 154 0.45 150 150 0.37
UgdNL | 1.42 152 0.45 1.46 147 0.37
hg/eg hm/em hded vgleg vm/iem vdled | hg/eg hm/em hd/ed vgleg vm/em vd/ed
Ug4 027 051 238 077 003 238 176 201 3.01760.0.03 2.99
Ug4NL| 0.29 053 238 081 0.05 238 183 207 3.01 0.79040 2.99
Ug4: Influence of calibration with 4 unidirectiongdoups and no non-linearity correction.
Ug4NL: Influence of calibration with second ordemrlinearity on the g sensors.
Ug4NL2: Influence of calibration with second oraem-linearity on all sensors.
Ug4NL3: Influence of calibration with second anddiorder non-linearity on the g sensors.

Ug4NLm3: Influence of calibration with second oraerg and third order on m & g.

Ug4NLa:

Influence of calibration with second anddiorder on all sensors.



