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This article describes a general algorithm for the calibration of 3-axis electronic compass/clinometer 
systems and gives an analysis of its properties. The algorithm presented is fast and accurate and 
makes minimal assumptions about the calibration environment. 

 

Introduction 

Electronic 3-axis compass/clinometer systems proved to be very useful for compact survey 
instruments. They allow the determination of the precise orientation of the device in space relative to 
gravitation and the earth magnetic field. Such a system works for any direction with any orientation of 
the device. There are no levelling requirements and no restriction on steepness. 

Due to manufacturing tolerances and external influences, such a system inevitably reveals certain 
errors. Among them are:  
- Offset and gain errors of the sensors. 
- Sensors mounted with incorrect angles. 
- Angular errors between the sensors and the Laser beam. 
- Influences of the battery and other metal parts on the magnetic field. 
Fortunately, all these errors can be eliminated relatively easily by a linear correction function applied 
to the sensor values before evaluation. The remainder of this article describes a method to calculate 
the coefficients of this correction function from a set of calibration measurements. 

 

The Calibration Function 

The calculation of the calibration function unavoidably includes a lot of vector and matrix algebra. In 
the following bold capital letters (A) are used for three dimensional matrices and small letters with an 
arrow (a

r

) for 3 dimensional (column) vectors. Appendix A contains a summary of the vector and 
matrix operations used. 

For the analysis of the problem, it is convenient to work in the local 
coordinate system of the device instead of a fixed, earth-referenced 
system. We generally use a coordinate system with the x-axis in forward 
(Laser beam) direction, y to the right, and z down (Fig. 1).  

If the gravity and magnetic field sensors are mounted along these axes, the 
values read from them naturally form two vectors in our coordinate 
system: The gravity vector isg

r

 and the magnetic field vector ism
r

, where i 

runs over all measurements used for the calibration. 

To apply calibration corrections we introduce the result vectors irg
r

 and 

irm
r

 connected to the sensor values by a linear function: 
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For the final direction measurements, the result vectors are used to compute the azimuth and 
inclination angles. 

During calibration, the goal is to find values for the two matrices G and M and the two offset vectors 
dg
r

 and dm
r

 such that the errors are minimized. To get a measure for the quality of a calibration we 

introduce the ‘true’ vectors itg
r

 and itm
r

. These are the theoretical exact gravity and magnetic field 

vectors for a given orientation of the device. The magnitude of the two vectors has no influence on the 
calibration and the final direction calculations. It is therefore arbitrarily set to one. 

To characterize the orientation of the device in space we use the yaw, pitch, and roll angles (also 
known as Tait-Bryan rotations or z-y-x Euler angles) given as follows: 
- Start with the device in normal position, z axis down and x axis pointing to north. 
- Turn the device around the local z-axis by the yaw angle ψ (= azimuth). 
- Turn the device around the local y-axis by the pitch angle θ (= inclination). 
- Turn the device around the local x-axis by the roll angle φ. 

In normal position the gravity vector points down along the z-axis: 
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The magnetic field is slightly more complicated. At the equator it points in the direction of the x-axis. 
At all other places it includes a vertical part. In general it can be written as: 
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Where α is the angle between the magnetic field vector and the gravity vector. It is connected to the 
dip angle, the (negated) inclination of the magnetic field lines as follows: 

dip−°= 90α  

At the equator dip is 0 and α is 90°. In the northern hemisphere dip and α are both between 0 and 90°. 
In the southern hemisphere dip is negative and α is between 90° and 180°. 

Now if we turn the device around a given axis by a given angle both 
vectors turn around the same axis but in the opposite direction because it 
is the coordinate system which turns, the vectors are globally fixed (Fig. 
2). If we apply all rotations as stated above we get the following general 
form of the true vectors: 
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Solving these equations for θ and Ψ gives the well known equations needed to get the final azimuth 
and inclination angles from the measured vectors: 
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Arctan is used here in the sense of the computer function arctan2(y, x) = argument of the vector [x, y] 
in the range ±π. For an alternate derivation see [1]. 

For the calibration the true vectors can be used to define the error of a set of calibration measurements 
as the RMS average of the distances between the calculated and the true vectors: 
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Now suppose for the moment we have a calibration environment which allows us to measure the 
device orientation angles exactly for each of a set of calibration measurements. This allows us to 
calculate the true vectors for each measurement using equations 2). To get an optimal calibration we 
simply search for G, M, dg

r

, and dm
r

such that the squared error gets minimal. 

The minimum can be found algebraically by setting all the partial derivatives to zero: 
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The Nabla or Del operator ∇  means a vector or matrix consisting of the derivatives to the elements of 
the given vector or matrix. There is no magic behind this operator; it is just a compact representation 
of the large number of derivatives. 

The equation system can be solved algebraically resulting in: 
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Averages (K) over i are used here instead of sums to avoid the numerous 1/n terms. 

We get a result only if the Gs and Ms matrices are invertible. This can easily be guaranteed if we have 
a large number of measurements and the corresponding isg

r

 and ism
r

 vectors are evenly spread over all 

possible directions. In this case the average isg
r

 and ism
r

 vectors as well as the non-diagonal elements 

of the ii sgsg
rr ⊗  and ii smsm

rr ⊗  matrices cancel out statistically. The sum of the diagonal elements of 

either of these matrices is equal to the square of the length of the corresponding sensor vector. The 
average matrices can therefore be approximated as: 
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with the identity matrix I. 

If the spreading is not perfect, the matrices are no longer diagonal but the diagonal elements are still 
dominant and the matrices are still invertible. 

 

In reality not all of the orientation angles of the calibration measurements are known. In this case we 
simply treat all not a priori known angles as additional unknown of the optimization problem. This 
results in a much larger but still manageable equation system. 

Three types of measurements are common in practice: 

 



1) Known Direction 

The traditional approach to calibration is to measure a given course of precisely known survey 
stations. A calibration procedure for such a setup is for instance described in [1]. 

For given survey stations, we know the direction and therefore the ψ and θ angles but not the roll 
angle φ. This gives us a new unknown iϕ  and a new equation for each measurement: 
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To get a replacement for the no longer known true vectors we define the partially turned vectors: 
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The true vectors itg
r

 and itm
r

 can now be approximated using an estimated iϕ : 
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Substitution in 7) gives 
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This can be solved as 
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We assume here that irg
r

 and irm
r

 are given vectors. However, their values depend on the calibration 

coefficients which in turn depend on true vectors and thus on the iϕ . So we have to solve the system 

consisting of equations 5) and 8) simultaneously. This can no longer be done algebraically but it can 
easily be done iteratively by applying  6) and 9) in turn until the result stabilizes. 

 

2) Free Measurements 

The method mentioned above is only useful if we have access to a set of precisely known survey 
stations. In practice it would be very desirable to have a way to do a calibration any time at any place. 
To approach this goal we examine the case of a set of free measurements without any known direction 
angles. This means all angles ψ, θ, and φ need to be treated as unknown. In contrast to equation 7) 
where we search the optimal turn angle around the x axis, we now search for an optimal rotation 
around any axis. Equation 7) is still valid but in addition we can substitute x

r

 by any other vector, in 
particular by y

r

 and z
r

: 
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The three equations above can be combined to: 
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In addition we have the general properties: 
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Together equations 10) and 11) uniquely define the vectors itg
r

 and itm
r

 (except for a mirrored 

solution ii tgtg
rr −=′  and ii tmtm

rr −=′ ). To satisfy equation 10) they have to reside in the same plane as 

irg
r

 and irm
r

. Inside this plane they must be rotated such that: 
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They can be constructed geometrically (Fig. 3) or calculated 
algebraically using the plane normal vector in

r

: 
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Calibration using free measurements has one major drawback: since 
the Laser direction is not used at all, it cannot be used to calibrate 
the angular error between the sensors and the Laser. We therefore 
have to do at least part of the measurements in a given direction. 
However, as we will see in the next section, there is no need to 
know this direction in advance. 

 

3) Unidirectional Groups 

An alternative to free measurements and measurements of known directions is to measure a fixed but 
not a priori known direction several times with various roll angles. Such a set of measurements with 
common ψ and θ but varying φ is called a unidirectional group. Similar to the case of known 
directions we have an unknown φ for each measurement and equations 7) and 9) still apply. In 
addition we have two unknown angles ψ and θ for each group to fix its direction. This gives us two 
additional equations to get the optimal rotation of the common part of the true vectors. The equations 
are similar to the case of free measurements except they are summed up over all measurements of the 
group and the individual φ turn must be removed first: 
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Here k runs over all groups and Sk means the set of measurements belonging to group k. 

As in the case of known directions, we define partially turned vectors for each group: 
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and write the true vectors as: 
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The kpg
r

 and kpm
r

can be seen as adapted versions of the itg
r

 and itm
r

 turned to a common roll angle. 

To be able to find the unknown direction, we introduce similarly adapted versions of the irg
r

 and irm
r

 

vectors: 
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The choice of the common roll angle is arbitrary and has no influence on the result. Instead of using φ 
= 0, we can as well conform to the roll angle of the first measurement in each group by replacing the 

iϕ  in 14) and 15) with: 

ikii ϕϕδ −=  

where ik is the first Ski ∈ . 

This makes the algorithm independent of the global reference system and avoids special handling of 
the roll angle ambiguities at ±=θ 90° (gimbal lock). 

Substitution of the partially turned and the adapted vectors into equations 7) and 13) and combination 
of the three equations gives: 
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This has the same form as 10) and allows us to work out kpg
r

 and kpm
r

 from the vectors kcg
r

 and kcm
r

 

similar to equations 12): 
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Equations 16) and 9) must be solved simultaneously because of their circular dependency. Fortunately 
iteration between the two equations converges so fast that a single iteration suffices to solve it with 
high accuracy. In practice we do the following: 
- Get an approximation of the iδ  from the relative roll angles of the result vectors irg

r

 and irm
r

. 

- Get the adapted vectors from the iδ  using equation 15). 

- Get kpg
r

 and kpm
r

 from kcg
r

 and kcm
r

 using equations 16). 

- Get the final iδ  using equation 9). 

- Get itg
r

 and itm
r

 using equation 14). 

 

The Influence of the Magnetic Field 

The shape of the magnetic field, in particular its inclination, is a critical value in our calculations. The 
precision of the corresponding α angle has a direct influence on the accuracy of the resulting 
calibration coefficients. In principle α is known for any location on earth. In practice, however, α is 
hard to figure out because it changes over time and there is an uncertainty because of local magnetic 
anomalies. It is therefore more convenient and more accurate to treat α as an additional unknown of 
the optimization process. This gives us the following new equation: 
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For free measurements where itg
r

, itm
r

, and irm
r

 reside in the same plane, it can be simplified to: 
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For unidirectional groups it can be expressed using the adapted vectors: 
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Again, these equations circularly depend on all other equations and their evaluation must be included 
in the main iteration loop. 

Note that, although the inclination of the magnet field is a critical value during calibration, the final 
calibration function is independent of it and a calibrated device works equally well everywhere in the 
world. 

 

The Roll Angle Ambiguity 

A set of calibration measurements consisting of known directions, free measurements, and 
unidirectional groups does not uniquely define the roll angles. If G and M are part of a solution of the 
equation system, so are G′ and M′ given by: 
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for any angle ω. Since we are not interested in measuring roll angles, any of these solutions is equally 
well suited for our needs. However, the ambiguity destabilizes the convergence of the main iteration. 
It is therefore advantageous to define the roll angles somehow. A simple way is to enforce a y-z 
symmetry in the G matrix. This means the roll angle is defined by the mounting angles of the y and z 
acceleration sensors. The symmetry can easily be enforced by a replacement of the relevant elements 
of the G matrix at the end of each iteration step: 
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Convergence and Termination Condition 

The question arises how many iterations we have to make in the main iteration loop until the values 
converge to the desired result. In general, according to the Banach fixed point theorem the error of an 
approximation nx  after n iterations compared to the precise solution x can be calculated as follows: 
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The Lipschitz constant q is the improvement of the precision from step to step. For our algorithm, q is 
mostly independent of the exact values used and can be assumed to be between 0.8 and 0.9 in practice. 
If we repeat the iteration step as long as 

6
11 10),max( −

−− >−− nnnn MMGG  

we can be sure all elements of the final matrices are within 510− of the exact values. This assures the 
error introduced is negligible compared to the uncertainty of the measurements. The errors of the 
offset vectors are ignored here because the elements of these vectors always converge faster than 
those of the matrices.  

 

The Main Iteration 

The main iteration can be summarized as follows: 

1) Calculate Gs and Ms and their inverse and a first estimation of α . 

2) Set G = M = I and dg
r

 = dm
r

 = 0
r

. 

3) Get the irg
r

 and irm
r

 vectors from G, M, dg
r

, dm
r

 and the isg
r

 and ism
r

. 

4) Get the itg
r

 and itm
r

 from irg
r

, irm
r

 and α. 

5) Get a new α from irm
r

 and itg
r

 or kcm
r

 and kpg
r

. 

6) Get new G, M, dg
r

, and dm
r

 from the itg
r

 and itm
r

. 

7) Enforce zyyz GG = . 

8) Loop to 3) as long as the changes in G and M 610−> . 

Remarks: 
- The matrix inversions of Gs and Ms need to be done only once because the two matrices depend on 
the sensor values only. 
- Measurements with known direction, free measurements, and unidirectional groups may be mixed 
freely inside a set of calibration measurements. 
- Free measurements can be handled as unidirectional groups consisting of a single measurement. 

A pseudo code version of the full algorithm is included in appendix B. 

 

The Calibration Procedure 

As stated earlier, the set of measurements used to calculate a calibration should be taken such that the 
device orientations are evenly spread over the rotation group. Just using randomly selected 
orientations is not a good idea because it turns out to be badly spread in practise. A good choice for a 
well spread set is for instance the rotational symmetry group of a cube. A cube can be placed with any 
of the 6 faces up and in each case any of the 4 side faces may be in front, giving a total of 24 
orientations. Unfortunately it turns out that 24 measurements are not enough for a good calibration. A 
perfect set of 60 orientations is contained in the symmetry group of the 
dodecahedron or icosahedron. However, this set of orientations is not 
useful in practice because it is too complex to be reproduced in the field. 

A proven and easy to use set of measurements is the following:  
Use the 14 directions given by the middle of the 6 faces and the 8 vertices 
of a cube as seen from its centre. Measure each direction with four evenly 
spread roll angles, giving a total of 56 measurements (Fig. 4). 

 

 



Representative numerical values: 

 Azimuth (ψ) Inclination (θ) Roll Angle (φ) 

Directions 1-4: 0º, 90º, 180º, 270º 0º 0º, 90º, 180º, 270º 
Directions 5-6: 0º 90º, -90º 0º, 90º, 180º, 270º 
Directions 7-14: 45º, 135º, 225º, 315º 35.3º, -35.3º 0º, 90º, 180º, 270º 

 

How Precise is it? 

Generally, a measuring device is useless if we have no idea how precise it is. It is therefore necessary 
to find a way to quantify the error of the device and the influence of the calibration on it. 

Assume for the moment all the sensors are perfect except for the proposed linear errors and we are 
able to execute the calibration measurements without introducing any additional error. In this case a 
calibration function exists which exactly compensates all the errors leading to a total error E of zero. 
This is obviously the minimum we are running into when the algorithm converges. 

In practice there are additional errors, namely random errors (noise), nonlinearities, and sighting errors 
during the measurements. Since these are all small errors on the input variables of our algorithm, we 
can use error propagation to analyze their influence on the resulting precision. 

Let us first look at a single measurement ignoring calibration for the moment. Equations 3) are used to 
get θ and ψ directly from the measured sensor values. If we assume the sensor errors are random and 
independent, we can use statistical error propagation: 
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Where θ∆  and ψ∆  are the errors of the resulting angles, g∆  and m∆  are the absolute errors of the 
individual sensors, and g~∆  and m~∆  are the relative errors of the sensors. All of them must be 
interpreted as standard deviations of the corresponding values. 

The error of ψ approaches infinity when θ gets near 90°. This is not a bad 
behaviour of the compass; it is a property of the Euler angles. When the 
angles are used to get a direction vector, the influence of ψ decreases 
when θ approaches 90°, and the error of the vector remains small for all 
directions. It is therefore appropriate to use the horizontal and vertical 
components of the error of a unit direction vector instead of the errors of 
the angles (Fig. 5): 
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The horizontal error depends slightly on the direction of the measurement. To get a general 
characteristic value, we use the RMS average of the error over all directions: 
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Not surprisingly, the error increases with decreasing α, i.e. towards the poles. Note, however, that this 
is partially compensated by the fact that the magnitude of the magnetic field (m

r

) increases at the 

same time. 

The sighting error is another independent directional error which adds to the sensor induced errors. In 
summary we have: 
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The Influence of the Calibration 

If we add calibration, there is no relevant change to the measurement errors above, but we introduce 
an additional error because of the limited precision of the calibration coefficients. The errors of the 
coefficients are induced by the sensor and sighting errors of the calibration measurements. 

Again they can be calculated using statistical error propagation. To keep things clear, a vector sx
r

 is 
used here as a short for all sensor values of all the calibration measurements (sg
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 & sm
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). Another 
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klch  and klcv  are universal coefficients given by equations 3) and 1). To remove their dependency on 

the device orientation during the final measurement, we use the RMS average over all orientations: 
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Fortunately, most of these coefficients evaluate to zero and some can be eliminated using symmetries. 

The remaining derivatives of C to x are given by the calibration algorithm and depend on the 
calibration procedure used, but not on the final measurement. They cannot be calculated algebraically 
because we do not have a closed representation of the algorithm. They can, however, easily be 
evaluated numerically for any given calibration procedure and a given α angle. To do this, we evaluate 
the full calibration algorithm several times with one of the input values offset by a small amount at 
each run. 



In summary, both the measurement error and the influence of the calibration can be written in a simple 
form using 6 coefficients given for a specific calibration: 
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 17) 

The following table shows the values of these coefficients for the measurement errors and some 
selected calibration procedures: 

M: Error of individual measurement. 
Ug4: Influence of calibration using 4 unidirectional groups (horizontal directions). 
Ug6: Influence of calibration using 6 unidirectional groups (horizontal and vertical directions). 
Uga: Influence of calibration using unidirectional groups for all directions. 
Kd: Influence of calibration using known directions. 
Kd+: Influence of error of known directions. 

 α =90° α =30° 
 hg hm hd vg vm vd hg hm hd vg vm vd 
M 0.33 0.67 1.00 1.00 0.00 1.00 2.33 2.67 1.00 1.00 0.00 1.00 
Ug4 0.07 0.12 0.08 0.13 0.05 0.08 0.30 0.35 0.12 0.13 0.04 0.11 
Ug6 0.05 0.09 0.06 0.11 0.02 0.06 0.26 0.31 0.09 0.11 0.02 0.07 
Uga 0.04 0.07 0.05 0.09 0.01 0.04 0.22 0.26 0.07 0.09 0.01 0.04 
Kd 0.03 0.06 0.05 0.07 0.01 0.06 0.18 0.22 0.09 0.07 0.01 0.06 
Kd+   0.04   0.06   0.06   0.06 
 

The main usage of these numbers is to assure the error induced by the calibration is small compared to 
the error of the measurement itself. As can be seen, this is achieved even if we use unidirectional 
groups for the 4 horizontal directions only and use free measurements otherwise (row Ug4). All 
calibration coefficients are less than 20% of the corresponding coefficients of the measurement errors. 
Since the errors are squared in the equations, we can be sure the calibration adds less than 10% to the 
total error. 

In the case of measurements of known directions an additional error is introduced because the given 
directions are themselves not precisely known. The coefficients belonging to these additional errors 
are given in the row Kd+. It can be seen that known directions do not lead to significantly better 
results compared to unidirectional groups. Even worse, if the predefined directions are not very 
precisely known, the additional errors easily outweigh the improvements. 

 

Quantifying the Error 

So far, we still have no absolute measure for the resulting error. To get a hint for the achieved 
precision, we calculate the error value E given by equation 4) during evaluation of the calibration 
algorithm. To relate E to the precision, we work out the standard deviation of a set of values id  

consisting of the components of the differences ijij tgrg
rr −  and ijij tmrm

rr −  such that: 
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The standard deviation of this set can be computed statistically: 
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Comparison of the two representations gives: 
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As above, the derivatives of E can be evaluated numerically for any given calibration procedure, 
resulting in an equation for the error function E similar to equations 17): 

2222 ~~ dedmemgegE ∆⋅+∆⋅+∆⋅=  

This equation does not suffice to calculate the errors exactly but it gives us some constraints and in 
particular it can be used to a get an upper bound of the relevant errors: 
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For hg, hm, hd, vg, vm, and vd we have to use the sum of the measurement and calibration errors.  

For the standard procedure with 4 unidirectional groups we get the following numbers: 

 α =90° α =30° 
 eg em ed    eg em ed    
Ug4 1.46 1.54 0.45    1.50 1.50 0.37    
 hg/eg hm/em hd/ed vg/eg vm/em vd/ed hg/eg hm/em hd/ed vg/eg vm/em vd/ed 
Ug4 0.27 0.51 2.38 0.77 0.03 2.38 1.76 2.01 3.01 0.76 0.03 2.99 
 

The table shows a maximal quotient of 3 and therefore we have a maximal error of E⋅3 . For a 
calibration error E = 1% this means a measurement error of 1.7% or about 1°. 

Be aware that this relation must be used with care. It is not a strict limit for the error of each individual 
measurement. Instead it is a statistical measure for the average error over many measurements. In 
addition we postulated independent random errors which is not necessarily the case, especially for 
nonlinearities and systematic errors during calibration.  

 

Conclusions 

It can be shown that 3-axis compass/clinometer devices can be calibrated without relying on a given 
calibration course. This allows recalibration of the device at any time in the field. 

The precision degradation introduced by improper calibration measurements can be analyzed 
mathematically. For the presented standard calibration procedure, the additional errors are negligible 
compared to the error of the measurement itself.  

The algorithm presented is used in the “paperless caving” system [2] to calibrate the DistoX, an all-in-
one electronic cave surveying device [3]. 

Experience shows that calibration must be repeated from time to time to avoid performance 
degradation due to component drift and aging. In devices using primary batteries, a calibration is 
needed after each battery change because the battery is unavoidably the main source of magnetic 
disturbance and new batteries never have exactly the same behaviour as the old ones. 
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Appendix A: Vector and Matrix Operations Used 
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Appendix B: The Calibration Algorithm 
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Appendix C: Inclusion of Non-Linearity Coefficients 

 

To correct a potential non-linearity of the gravity vectors, we use a simple second order correction 
function on each sensor axis: 
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where the ilg
r

 are the linearized gravity values and jc are the non-linearity correction coefficients. 

There is no need for a general second order function of the form: 
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because linear and constant errors are corrected anyway by the standard calibration. The c⋅− 2
1 term is 

added to keep the influence of the correction function on the rest of the calibration minimal. 

The three equations can be written in vector form: 

csglg iii

r

o

rr

G2+=  

using the diagonal matrix iG2 : 

















−
−

−
=⋅−=

2
12

2
12

2
12

2
12

00

00

00

)(

iz

iy

ix

ii

sg

sg

sg

sgdiag
r

r

r

r

IG2  

The optimal non-linearity correction coefficients f
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 are selected such that the error function 2E  gets 

minimal. E is defined as before except that the linearized vectors ilg
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If necessary, a similar approach can be used to correct the second order non-linearity errors of the 
magnetic field sensors and the third order errors of both kind of sensors. However, the quality of the 
calibration decreases significantly if too much non-linearity coefficients are used (see below). 

The calculation of the coefficients must be included in the main iteration loop. In addition, the 
linearized sensor values and the values depending on it including the Gs matrix and its inverse must 
be recalculated with the new coefficients: 
 
1) Calculate Gs and Ms and their inverse and a first estimation of α . 

2) Calculate the iG2  matrices from the isg
r

 vectors. 

3) Set G = M = I and dg
r

 = dm
r

 = c
r

 = 0
r

. 

4) Get the irg
r

 and irm
r

 vectors from G, M, dg
r

, dm
r

 and the isg
r

 and ism
r

. 



5) Get the itg
r

 and itm
r

 from irg
r

, irm
r

 and α. 

6) Get a new α from irm
r

 and itg
r

 or kcm
r

 and kpg
r

. 

7) Get new G, M, dg
r

, and dm
r

 from the itg
r

 and itm
r

. 

8) Enforce zyyz GG = . 

9) Get a new c
r

 from G, dg
r

, iG2 , itg
r

, and isg
r

. 

10) Recalculate the ilg
r

 vectors, Gs, and 1−Gs  using c
r

. 

11) Loop to 4) as long as the changes in G and M 610−> . 

 
The non-linearity correction coefficients are another source of calibration related error. However the 
additional error is neglectible compared to the other errors. Non-linearity correction is therefore 
advantegous even for small non-linearities. 

 

 α =90° α =30° 
 hg hm hd vg vm vd hg hm hd vg vm vd 
M 0.33 0.67 1.00 1.00 0.00 1.00 2.33 2.67 1.00 1.00 0.00 1.00 
Ug4 0.07 0.12 0.08 0.13 0.05 0.08 0.30 0.35 0.12 0.13 0.04 0.11 
Ug4NL  0.08 0.13 0.08 0.15 0.07 0.08 0.33 0.38 0.12 0.15 0.06 0.11 
Ug4NL2 0.08 0.15 0.08 0.15 0.07 0.08 0.36 0.45 0.12 0.17 0.07 0.11 
Ug4NL3 0.09 0.14 0.08 0.20 0.15 0.08 0.47 0.41 0.12 0.21 0.12 0.11 
Ug4NLm3 0.22 0.15 0.08 0.73 0.07 0.08 0.52 0.50 0.12 0.23 0.14 0.11 
Ug4NLa 0.23 0.16 0.08 0.74 0.07 0.08 0.55 0.58 0.12 0.24 0.15 0.11 
 

 α =90° α =30° 
 eg em ed    eg em ed    
Ug4 1.46 1.54 0.45    1.50 1.50 0.37    
Ug4NL 1.42 1.52 0.45    1.46 1.47 0.37    
 hg/eg hm/em hd/ed vg/eg vm/em vd/ed hg/eg hm/em hd/ed vg/eg vm/em vd/ed 
Ug4 0.27 0.51 2.38 0.77 0.03 2.38 1.76 2.01 3.01 0.76 0.03 2.99 
Ug4NL 0.29 0.53 2.38 0.81 0.05 2.38 1.83 2.07 3.01 0.79 0.04 2.99 
 

Ug4: Influence of calibration with 4 unidirectional groups and no non-linearity correction. 
Ug4NL: Influence of calibration with second order non-linearity on the g sensors. 
Ug4NL2: Influence of calibration with second order non-linearity on all sensors. 
Ug4NL3: Influence of calibration with second and third order non-linearity on the g sensors. 
Ug4NLm3: Influence of calibration with second order on g and third order on m & g. 
Ug4NLa: Influence of calibration with second and third order on all sensors. 

 

 

  


